
Reverse
Engineering

Malware
Dynamic Analysis

of Binary Malware II

Advanced dynamic
analysis

 Debugger scripting

 Hooking and library injection

 Instrumentation frameworks

 Emulators and virtualization

 Memory forensics

2

Debugger automation
with scripting

 Debuggers can be extended with flexible scripting languages like python

 Any debugging task can be automated: unpacking, decrypting strings, etc.

 Debuggers that support python scripting:

 Immunity debugger

 GDB

 IDA debugger

 Python debugger module for Windows:

 PaiMei, reverse engineering framework includes ”PyDbg” module

 F-secure proprietary python Win32 debugger using ctypes

3

Example debugger
script: Sober.YURL’s

 Sober was a family of email-worms, written in Visual Basic

 It updated itself using a set of dynamically generated URL’s

 Reversing the URL generation algorithm was very challenging

 Developing an automated debugging script was much faster

DEMO: Case Sober.Y

4

Hooking and Library
Injection

 Basic tracing and troubleshooting techniques

 Can be used in dynamic analysis and reverse engineering very effectively

 Hooks are not using debug API:

 Fast execution

 Not confused by anti-debugging tricks

 Intrusive (will modify the target address space)

 Tools can be quite complicated to use (notable exception: Frida)

 Executed on real hardware!

 Example use: Trace file I/O, registry and networking for analyzing program
functionality

 Example use: Detect dynamically generated code sections for unpacking

5

Inline hooking
 Simple way to instrument binaries dynamically, without need to

recompile programs

 Usually done by inserting branches to the hooked (target)
functions

 Hooking function gets the same parameters as target function

 After the analysis, target function gets back the control

 Analysis code in the hooking function needs memory space

 Position-independent shellcode can be inserted anywhere in the
memory space, but more common method is to provide code by
injecting dynamically loaded library

6

Library injection
 Target process is forced to load extra module containing the

instrumentation code

 Interesting functions in the target process are hooked

 Hooking module does the necessary processing and returns back
to hooked function

7

PE IAT hooking
 Basic idea: hook by replacing the pointer in import address table

(IAT) to the hooking function

 IAT can be easily parsed from the PE headers

 Hooking function is inserted in the address space by library
injection

8

Example hooking
library: Detours

 Microsoft Research hooking/injection library for x86/amd64/ia64
Windows

 Uses flexible inline hooking technique

 Understands native functions and managed code (MSIL)

 Detours DLL is loaded with library injection:

 Dynamically with library injection

 Statically, by modifying the target import table for loading the
Detours DLL before target entry point executes
(DetourCreateProcessWithDLL())

 Hooks are inserted conveniently with DetourAttach() and
removed with DetourDetach()

9

Example hooking
library: Frida

 Hook library functions on Windows, OSX, iOS, Linux and Android

 Injected code written in JavaScript

 Internally, Frida injects V8 engine and builds transparent code
transitions from native to JS and back

10

Example tool: FIST
 FIST: F-secure Interactive System Trace

 Proprietary tool for generic unpacking on x86 Windows

 Hooks most kernel32.dll, advapi32.dll, msvcrt.dll, shell32.dll and user32.dll
functions

 Hook functions compare the code in return address to the disk image

11

 If the return address was modified, the code is
possibly near the original entry point

 Based on the fact that most non-trivial programs
need to use Win32 API’s

Instrumentation
frameworks

 Dynamic manipulation of programs using binary instrumentation

 Good for profiling and debugging, but also writing reverse
engineering tools

 More flexible than function hooking:

 Instrument instructions, basic blocks

 Instrument system calls

 Inspect memory read/write

 … And much more

 Major frameworks: DynamoRIO, Pin, Valgrind

 Problems with some packed files!

12

Using emulators for
tracing and

instrumentation
 Emulators can be used for tracing by instrumenting code outside the OS

 By definition, it is non-intrusive

 Target executed on emulated hardware, more safe than debugging and
hooking

 Instrumentation API:

 Interface for hooking up instructions, exceptions etc.

 Example: bochs instrumentation API

 Debugging API:

 Emulator can export standard debugger API, such as GDB

 Example: qemu GDB stub

13

Emulator types
 Hardware virtualization

 Emulator is sharing the hardware resources with the host machine

 CPU instructions run directly on real CPU

 Good performance

 Examples: VMWare, VirtualBox, Xen, KVM (Linux kernel VM)

 Software

 Emulator implemented purely using software

 CPU instructions are interpreted or translated dynamically

 Can be quite slow

 Examples: Bochs, Qemu

The HW/SW distinction is not really that clear, for example all HW virtualization
solutions will fallback to software emulation in certain situations, like real-mode.
Also Xen and KVM use qemu for hardware emulation.

14

Emulator example:
Bochs instrumentation

API
 Bochs: open-source PC (x86/amd64) emulator

 Uses interpretation for emulating the instructions

 Interpretation makes Bochs very portable, it runs on any C++ environment

 Supports powerful instrumentation with C++

 Callbacks for

 CPU events, like interrupts and exceptions

 CPU instructions

 Support functions, such as memory I/O

15

Emulator example:
Using the Qemu GDB

stub
 Qemu: open-source multi-platform emulator

 Uses dynamic code translation for speeding up the emulation

 Supports debugging via the built-in GDB stub

 Qemu GDB stub features:

 Non-intrusive

 Breakpoints are implemented in the stub (”hardware”)

 VM time stops when the stub is waiting for input

 GDB supports python scripting

 Flexible system-level tracing tools

16

Attacking emulators
 Malware has a lot of ways to detect emulators, roughly categorized as:

 Timing attacks

 OS implementation

 Hardware implementation

 Emulator-related software inside the OS, for example VMWare tools

 Emulators can also be attacked with denial of service attack:

 Execute massive amount of instructions

 Emulators in AV engines cannot give too much clock cycles for the
emulator

 Most dangerous attack on emulators is to escape from the emulated
environment by using a bug in the emulator sofware

17

Detecting emulators:
OS implementation

 If the emulator is not running full-blown OS, its API emulation can be easily
detected

 Windows has huge amount of documented API’s and undocumented, still quite
solid API’s

 Emulators try to return something even for unsupported API’s, just to keep
execution ongoing

 Current malware uses a lot of API-related tricks to detect emulators

 Some examples:

 Call API’s with bogus or unsupported parameters, verify return values

 Use of callback functions in the API’s for doing something useful

 Observe side-effects of API’s (register values, traces in stack etc.)

18

Detecting emulators:
Hardware

 Implementing a CPU emulator is a very complicated task:
 Intel x86/amd64 instruction set consists of ~500 instructions
 Paging and exception handling is complicated

 Full-blown PC emulator needs to implement a fair amount of hardware
devices to be convincing

 Some examples for detecting emulator hardware:
 Detect missing CPUID information or inconsistencies (*)
 Check implementation of complicated instructions, like

CMPXCHG8B (*)
 Check non-zero Local Descriptor Table (LDT) to detect VMWare (*)
 Detect VMWare devices, for example ”VMWare PCI Express Root

Port”

(*) Peter Ferrie: Attacks on More Virtual Machine Emulators (http://pferrie.tripod.com/papers/attacks2.pdf)

19

Emulator detection
example: CPUID

instruction
 CPUID is used to get the processor information:

 Vendor identification string, for example ”GenuineIntel”
 CPU type, family, model and stepping
 Supported instruction sets
 Other features, such as thermal and power management

 Software emulator needs to be consistent in CPUID return values
and features it can emulate

 Attacker can also check if such a CPU is really available in reality

 Almost all software emulators fail to be consistent

20

CPUID continued
From Intel 64 and IA-32 Architectures Software Developer’s Manual:

21

Memory forensics
 Idea: let the malware run freely and analyze the memory

 Why is it effective:

 All interesting is in memory (executable images, file I/O
buffers, OS structures and objects etc.)

 Analysis is done outside the running environment

 Possible drawbacks:

 Slowness

 When to dump?

 On physical machines, dump software can be tampered

22

Volatility

23

 Open-source framework for physical memory analysis

 Support for 32 –and 64-bit Windows, Linux and OSX

 Gather information from processes, virtual memory, OS structures, OS
objects and more

 Dump images and memory pages on disk

 Lots of useful plugins, like ”malfind”

 Typical workflow: pause a VM, give volatility the physical memory as a
flat file

DEMO

Volatility example:
Equation/GRAYFISH

24

> volatility -f grayfish.vmem malfind

Process: services.exe Pid: 716 Address: 0xb90000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 8, PrivateMemory: 1, Protection: 6

0x00b90000 68 00 00 00 00 68 17 00 b9 00 68 d5 1f 82 7c 68 h....h....h...|h
0x00b90010 fa 13 b0 00 ff 24 24 8b c5 83 c0 11 c7 00 29 16 $$.......).
0x00b90020 80 7c 81 c0 ad ff ff ff bf 6a 15 b0 00 33 ed ff .|.......j...3..
0x00b90030 64 24 fc 90 90 90 90 90 90 90 90 90 90 90 90 90 d$..............

0xb90000 6800000000 PUSH DWORD 0x0
0xb90005 681700b900 PUSH DWORD 0xb90017
0xb9000a 68d51f827c PUSH DWORD 0x7c821fd5
0xb9000f 68fa13b000 PUSH DWORD 0xb013fa
0xb90014 ff2424 JMP DWORD [ESP]

Equation: The Death Star of Malware Galaxy - Kaspersky Labs' Global Research & Analysis Team

> hexdump -C services.exe.1f64550.0x00b00000-0x00b0afff.dmp

00000000 0f 5e 30 00 61 00 00 00 2c 00 00 00 35 35 00 00 |.^0.a...,...55..|
00000010 e8 00 00 00 00 00 00 00 c0 00 00 00 00 00 00 00 |................|
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000030 00 00 00 00 00 00 00 00 00 00 00 00 50 00 00 00 |............P...|
00000040 1a 95 7e 1a 00 bc 23 8f 2b e8 cb 44 8f 2b 9c 78 |..~...#.+..D.+.x|
00000050 43 31 60 d0 66 05 ad 66 eb 6f 60 81 eb 3a 3a 05 |C1`.f..f.o`..::.|
00000060 fc 60 b6 17 60 66 c7 3a 60 43 3a 60 ec a5 d1 60 |.`..`f.:`C:`...`|
00000070 6f 05 4c 17 7a 4f 4f ee 8c 00 00 00 00 00 00 00 |o.L.zOO.........|
00000080 99 ac eb 4a 85 97 e5 8f 85 97 e5 8f 85 97 e5 8f |...J............|
00000090 a4 73 cb 8f ef 97 e5 8f 80 3e f7 8f 59 97 e5 8f |.s.......>..Y...|
000000a0 80 3e b9 8f ef 97 e5 8f 13 a1 f7 8f 62 97 e5 8f |.>..........b...|
000000b0 a4 ef 06 8f 24 97 e5 8f 85 97 1a 8f 7d 97 e5 8f |....$.......}...|
000000c0 13 a1 2c 8f 97 97 e5 8f b0 37 b9 8f ba 97 e5 8f |..,......7......|
000000d0 06 43 81 78 85 97 e5 8f 00 00 00 00 00 00 00 00 |.C.x............|
000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000000f0 70 b7 00 00 44 cb 2c 00 e5 16 93 4d 00 00 00 00 |p...D.,....M....|

> volatility -f grayfish.vmem vaddump –pid 716

Equation/GRAYFISH

> hexdump -C services.exe.1f64550.0x00b00000-0x00b0afff.dmp

00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 |MZ..............|
00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |........@.......|
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000030 00 00 00 00 00 00 00 00 00 00 00 00 f0 00 00 00 |................|
00000040 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |........!..L.!Th|
00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|
00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |
00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$.......|
00000080 ab 84 61 9e ef e5 0f cd ef e5 0f cd ef e5 0f cd |..a.............|
00000090 6c f9 01 cd ed e5 0f cd 80 fa 05 cd eb e5 0f cd |l...............|
000000a0 80 fa 0b cd ed e5 0f cd d9 c3 05 cd e6 e5 0f cd |................|
000000b0 6c ed 52 cd ec e5 0f cd ef e5 0e cd d7 e5 0f cd |l.R.............|
000000c0 d9 c3 04 cd e5 e5 0f cd 10 c5 0b cd ee e5 0f cd |................|
000000d0 52 69 63 68 ef e5 0f cd 00 00 00 00 00 00 00 00 |Rich............|
000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000000f0 50 45 00 00 4c 01 04 00 0f 82 59 47 00 00 00 00 |PE..L.....YG....|

> volatility -f grayfish.vmem vaddump –pid 716

Equation/GRAYFISH

KAN: Forensics
memory tracing

27

 Memory tracing engine KAN:
 Build on top of KVM, the Linux kernel VM
 Presented in Recon 2014

 Instead of a single memory snapshot, take a series of snapshots

 Create a coherent overall picture of system behavior (much like
debugging/system tracing)

 Capture transient memory data, like
 Obfuscated code and data
 Self-modifying code
 Crypto keys and buffers
 Short-lived data, like URL’s, networking buffers, configuration data, etc.

 More information coming from Endre Bangerter, Security Engineering Lab,
Bern University of Applied Sciences

Summing it all:
Cuckoo sandbox

28

 Cuckoo has it all: instrumentation with hooks, emulators,
memory forensics, network traffic analysis, automated reporting

 Can utilize several different VM platforms: VMWare, KVM,
VirtualBox, or use a custom platform, for example real HW

 Support of volatility analysis after sample run

 Nice reporting

 Used by VirusTotal and many others

29

