Reverse
Engineering
Malware

Dynamic Analysis
of Binary Malware li

—
F-Secure. Q¥

Advanced dynamic
analysis

= Debugger scripting

" Hooking and library injection
" |nstrumentation frameworks
" Emulators and virtualization

" Memory forensics

—
9 F-Secure. Q¥

Debug er automation
with scripting

Debuggers can be extended with flexible scripting languages like python

Any debugging task can be automated: unpacking, decrypting strings, etc.

Debuggers that support python scripting:
" |mmunity debugger
= GDB
" |DA debugger

Python debugger module for Windows:
" PaiMei, reverse engineering framework includes "PyDbg” module
" F-secure proprietary python Win32 debugger using ctypes

—
F-Secure. Q¥

Example debugger
script: Sober.Y URL’s

Sober was a family of email-worms, written in Visual Basic

It updated itself using a set of dynamically generated URL’s

Reversing the URL generation algorithm was very challenging

Developing an automated debugging script was much faster

DEMO: Case Sober.Y

42E
vbaDerefAryl
yte ptr [eax], 2@h

dAndExec+D29

Al
Fl Help C Code D Data N Name Alt-X Quit F10 Menu

DISK: 27G

—
F-Secure. Q¥

Hooking and Library
Injection

Basic tracing and troubleshooting techniques

Can be used in dynamic analysis and reverse engineering very effectively

Hooks are not using debug API:
= Fast execution
* Not confused by anti-debugging tricks

Intrusive (will modify the target address space)
Tools can be quite complicated to use (notable exception: Frida)
Executed on real hardware!

Example use: Trace file I/O, registry and networking for analyzing program
functionality

Example use: Detect dynamically generated code sections for unpacking

—
F-Secure. Q¥

Inline hooking

= Simple way to instrument binaries dynamically, without need to
recompile programs

= Usually done by inserting branches to the hooked (target)
functions

" Hooking function gets the same parameters as target function
= After the analysis, target function gets back the control
= Analysis code in the hooking function needs memory space

= Position-independent shellcode can be inserted anywhere in the
memory space, but more common method is to provide code by
injecting dynamically loaded library

—
6 F-Secure. Q¥

Library injection

" Target process is forced to load extra module containing the
instrumentation code

" |nteresting functions in the target process are hooked

=" Hooking module does the necessary processing and returns back
to hooked function

Target.exe hook-lib.dll

—
7 F-Secure. Q¥

PE IAT hooking

" Basic idea: hook by replacing the pointer in import address table
(IAT) to the hooking function

" |AT can be easily parsed from the PE headers

" Hooking function is inserted in the address space by library
injection

—
8 F-Secure. Q¥

Example hooking
library: Detours

" Microsoft Research hooking/injection library for x86/amdé4/ia64
Windows

= Uses flexible inline hooking technique
» Understands native functions and managed code (MSIL)

= Detours DLL is loaded with library injection:
= Dynamically with library injection
= Statically, by modifying the target import table for loading the

Detours DLL before target entry point executes
(DetourCreateProcessWithDLL())

" Hooks are inserted conveniently with DetourAttach() and
removed with DetourDetach()

—
9 F-Secure. Q¥

Example hooking
library: Frida

» Hook library functions on Windows, OSX, iOS, Linux and Android
" |njected code written in JavaScript

" |nternally, Frida injects V8 engine and builds transparent code
transitions from native to JS and back

123
onoo

I Il I’-
10 F-Secure. %¢

Example tool: FIST

® F|ST: F-secure Interactive System Trace
= Proprietary tool for generic unpacking on x86 Windows

= Hooks most kernel32.dll, advapi32.dll, msvcrt.dll, shell32.dll and user32.dll
functions

= Hook functions compare the code in return address to the disk image

= |fthe return address was modified, the code is Packed executable Original executable
possibly near the original entry point

= Based on the fact that most non-trivial programs PE headers
need to use Win32 API’s

—
11 F-Secure. Q¥

Instrumentation
frameworks

® Dynamic manipulation of programs using binary instrumentation

» Good for profiling and debugging, but also writing reverse
engineering tools

= More flexible than function hooking:
" |nstrument instructions, basic blocks
" |[nstrument system calls
" [nspect memory read/write
" ... And much more

" Major frameworks: DynamoRIO, Pin, Valgrind

" Problems with some packed files!

F-Secure @&
-I 2 =yecure.vg

Using emulators for
tracing and
instrumentation

Emulators can be used for tracing by instrumenting code outside the OS

By definition, it is non-intrusive

Target executed on emulated hardware, more safe than debugging and
hooking

Instrumentation API:
" |nterface for hooking up instructions, exceptions etc.
= Example: bochs instrumentation AP

Debugging API:
" Emulator can export standard debugger API, such as GDB
" Example: gemu GDB stub

—
13 F-Secure. Q¥

Emulator types

" Hardware virtualization
Emulator is sharing the hardware resources with the host machine

CPU instructions run directly on real CPU

Good performance
Examples: VMWare, VirtualBox, Xen, KVM (Linux kernel VM)

= Software

Emulator implemented purely using software

CPU instructions are interpreted or translated dynamically

Can be quite slow

Examples: Bochs, Qemu

The HW/SW distinction is not really that clear, for example all HW virtualization
solutions will fallback to software emulation in certain situations, like real-mode.
Also Xen and KVM use gemu for hardware emulation.

F-Secure ™
14 -Secure. %@

Emulator example:
Bochs instrumentation
API

Bochs: open-source PC (x86/amdé4) emulator

Uses interpretation for emulating the instructions

Interpretation makes Bochs very portable, it runs on any C++ environment

Supports powerful instrumentation with C++

Callbacks for
= CPU events, like interrupts and exceptions

= CPU instructions

Support functions, such as memory I/O

—
15 F-Secure. Q¥

Emulator example:
Using the Qemu GDB
stub

Qemu: open-source multi-platform emulator

Uses dynamic code translation for speeding up the emulation

Supports debugging via the built-in GDB stub

Qemu GDB stub features:
= Non-intrusive
" Breakpoints are implemented in the stub ("hardware”)
= VM time stops when the stub is waiting for input

GDB supports python scripting

Flexible system-level tracing tools

Secure @&
16 F-Secure. ¢

Attacking emulators

= Malware has a lot of ways to detect emulators, roughly categorized as:

Timing attacks

OS implementation

Hardware implementation

Emulator-related software inside the OS, for example VMWare tools

" Emulators can also be attacked with denial of service attack:
" Execute massive amount of instructions
* Emulatorsin AV engines cannot give too much clock cycles for the
emulator

" Most dangerous attack on emulators is to escape from the emulated
environment by using a bug in the emulator sofware

F-Secure ™
17 -Secure. %@

Detecting emulators:
OS implementation

» |fthe emulator is not running full-blown OS, its APl emulation can be easily
detected

» Windows has huge amount of documented API’'s and undocumented, still quite
solid API’s

* Emulators try to return something even for unsupported API’s, just to keep
execution ongoing

= Current malware uses a lot of API-related tricks to detect emulators

" Some examples:
= Call API’'s with bogus or unsupported parameters, verify return values
= Use of callback functions in the API’s for doing something useful
= Observe side-effects of API’s (register values, traces in stack etc.)

F-Secure @&
-|8 =yecure.vg

Detecting emulators:
Hardware

" |mplementing a CPU emulator is a very complicated task:
= |ntel x86/amdé4 instruction set consists of ~500 instructions
" Paging and exception handling is complicated

" Full-blown PC emulator needs to implement a fair amount of hardware
devices to be convincing
= Some examples for detecting emulator hardware:
" Detect missing CPUID information or inconsistencies (*)

" Checkimplementation of complicated instructions, like
CMPXCHGS8B (%)

" Check non-zero Local Descriptor Table (LDT) to detect VMWare (%)

" Detect VMWare devices, for example "VMWare PCl Express Root
Port”

(*) Peter Ferrie: Attacks on More Virtual Machine Emulators (http://pferrie.tripod.com/papers/attacks2.pdf)

F-Secure @&
-I 9 =yecure.vg

Emulator detection
example: CPUID
instruction

= CPUID is used to get the processor information:
» Vendor identification string, for example “Genuinelntel”
" CPU type, family, model and stepping
" Supported instruction sets
" Other features, such as thermal and power management

m Software emulator needs to be consistent in CPUID return values
and features it can emulate

= Attacker can also check if such a CPU is really available in reality
= Almost all software emulators fail to be consistent

Secure @&
20 F-Secure. ¢

CPUID continued

From Intel 64 and IA-32 Architectures Software Developer’s Manual:

-

Initial EAX
Value

Infermation Provided about the Processor

Basic CPUID Infarmation

OH

EAX
EEX

Maximum Input Value for Basic CPUID Infermation (see Table 3-18)
“Genu”

217

€0x D e upoer
BITiS 0. e cormesponding b fikd 1 XKCRD s reserves
Processor Extended Sate Enumeation Sub-eaf (EAX = 00F ECX = 1)

o
ECX ntel
EDX “inel” it X o
Valve. Information Provided about the Processor Vove Information Provided about the Processor
)))) ot o st v T e ey e o
. Bits 07-05: Cache Leves starts montor granuanty) sce. a
0TH EAX Wersion Information: Type, Family, Model, and Stepoing ID (see P —— sl pmin) e
Figure 3-5) L B O Ao
B 3116 Resed =0 s Sy e s o St
Eox el Sl e 12 e Bas 1800
EBX Bits 07-00: Brand Index Sl - @ rewneseo
Bits 15-08: CLFLUSH line size (Value = 8 = cache line size in bytes) iy e
i) ; e SERGTRE
- E E0X Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 23-16: Maximum number of addressable 1Ds for logical processors 120300 Moo of O s s agrtd g AT G 31 o o i i st 7
i i - - Bt 11 - 08: Number of C2* sub C-states supported using MWAIT
in this physical package™. %1512 Numosrof 3 s Cataes spaared g MAAT B S s A SSRGS
i B 1 Bits 19- 16: Number of (4" sub C-states supported using MWAIT -
Bits 31-24: Initial APIC 1D Bt 31 - 20 Reserved = 0 [R Rp—
nore 53 e
o &' m mDDD i1, Wukvp(ﬂmlu(m‘dsymmnm
) : ot e s o AP C e o1 s
ECX Feature Information (see Figure 3-& and Table 3-20) Thermal 3nd Powe Nanagenent Leet 511
i i ToH |EAX B00 Digtal temperanure sensor s susporied EX Rewnes
EDX Feature Information (see Figure 3-7 and Table 3-21) B0l T Bt Tecelos Ao (4 a0 ot B oo
12 MISCENABLE(38]). Dirwct Cache Access informanion Lea
St s NPT EAX By Dtk Cco et SO AT A N T e e
foreecheveonpage 3224 i BRCORPLIL e Kk sl e W o il W s e Fmeed
A n:eﬁu f::,':’m o0 G et o5 18 SoyS 3008 G 1A 80 B Reserved
S T ———— ST R Pl
e P X BuS03. 00 Nomhe of emen Tresnots Dl
TR (o o310 et
Initial EAX i EAX >
- o It rovtes st e processe e frs et v s e o -
Yy €DK 815 31- 00 x2APCID the curent ogicsl rocessar Vave sor BOO0000TH | X Exténed Processor SQnanre ard Fesue B i eny
Sl wores. e - e R
i or iR ——— oo kit €8x Resarved ot pm-m u««m“ruum - Disabied
A - o e o w o s
formanca mentang eans. of the system. rmvmmmmu[m\wnampmb E0X " SW&LSW'-W(M“WM) 04K - dway
L terentANROR daplpidaonsc poses Processo xtonaed St Evurstion S ooes [EAY + GO EGX =21]
B e e s oy o Tores
B2 04 Lot s ot e P 1 | 8. Leaf ODM cusput depends on the intil value n ECX OFH- Fuly associative
B2 v ecion v el e | T et e el o St e et e et I B Resenan
"y type” values 00 ot mean higher leve' | . EOX Reserved =0
e e g o Sk et gtk 2 X 0700 Reseneds
; EAX Bits 31.0x The size in Bytes (from the offset specified in EBX) of the. BOO00002M | EAX Bit 08 Invaniant TSC avaladie It 1
1:5M7 L Bits 31 b
2 a raports 0 f . o
32[;5" i ::;:m This fikd reports O f the sub-lea index, A s invald". e 80000008+ | EAX. m’ogy:‘oa‘m -
o Eaend St Enmston P L (AK + SR 6K+) T s f e SSAVEAESTOR 325 o A ek
= Tl a3 O s . ol = B 3116 Resedn 0
= Leaf 00N main eat (ECX # 0} X o 5 X ax m,m.q
ooy o o) s S0 5 B emnesnd
71 e iy et s 9 X a1} i carasendeg o fld i XERO N reservd X ne sub-leat index. n. o
A O cutst e ot an i i v 10X are O doeeide i 0x NOTES:
Lot OB eues i E8X(15] 4 oz 205, 8102 256D AVX ”""""”',"’”m“"“"‘“"’ B030005H | EAX .
EAX B3 04.0C: ey o bt mmr-z‘r(m\:m-.r-:- Bins 31- 03 Reserved 40000000H fication o o
[S57en e sirad s core o s
T L L B g v by fon e s ve arrirer Byt = ax
S y
- s 1500 Namor m‘wmmmm_wmw 50 d*erant than ECX I 5ome 1eanres 3t 1he end of the XSAVE save. “Extended Funcbon CPUID infonmation ‘80000006 3
5 st ey e e s s
31§ Eox 81 31-00: Kaximum size (3ytes. from e Degiving of e Tadle 3-18). =
@ o0 0w s ken it ST -
i 5y ke e o rcesn, 02 e v % e ke
R s il o

—
F-Secure. Q¥

Memory forensics

" |dea: let the malware run freely and analyze the memory

= Why is it effective:

= Allinteresting is in memory (executable images, file I/O
buffers, OS structures and objects etc.)

= Analysis is done outside the running environment

= Possible drawbacks:
= Slowness
= When to dump?
= On physical machines, dump software can be tampered

—
22 F-Secure. Q¥

@ Volatility

* Open-source framework for physical memory analysis
= Support for 32 —and 64-bit Windows, Linux and OSX

" Gather information from processes, virtual memory, OS structures, OS
objects and more

* Dump images and memory pages on disk
" |ots of useful plugins, like “malfind”

= Typical workflow: pause a VM, give volatility the physical memory as a
flat file

DEMO

—
23 F-Secure. Q¥

Volatility example:
Equation/GRAYFISH

> volatility -f grayfish.vmem malfind

Process: services.exe Pid: 716 Address: 0xb90000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 8, PrivateMemory: 1, Protection: 6

Ox00b90000 68 00 0O 0O 00 68 17 00 b9 00 68 d5 1f 82 7c 68
0x00b90010 fa 13 bo 00 ff 24 24 8b c5 83 cO 11 c7 00 29 16
0x00b90020 80 7c 81 c@ ad ff ff ff bf 6a 15 bo 00 33 ed ff
0x00b90030 64 24 fc 90 90 90 90 90 90 90 90 90 90 90 90 90
0xb90000 6800000000 PUSH DWORD ©x0

0xb90005 681700b900 PUSH DWORD ©xb90017

0xb9000a 68d51f827c PUSH DWORD ©x7c821fd5

0xb9000f 68fal3booo PUSH DWORD ©xb@13fa

0xb90014 ff2424 JMP DWORD [ESP]

Equation: The Death Star of Malware Galaxy - Kaspersky Labs’ Global Research & Analysis Team

24

—
F-Secure. Q¥

Equation/GRAYFISH

> volatility -f grayfish.vmem vaddump -pid 716

1
(@]

> hexdump services.exe.1f64550.0x00b00000-0x00bOat{f.dmp

00000000 Of 5e 30 00 61 00 00 00 2C 00 00 ©0 35 35 00 @0 |.”@.a...,...55..|
00000010 e8 00 OO OO 00 00 00 00 CO 00 00 00 00 00 00 @0 |................ |
00000020 0O 00 OO PO 00 00 00 0O 00 00 00 00 00 00 00 @0 |................ |

00000030 00 00 PO 0O 00 00 OO 00 ©O 00 00 00 50 00 00 00 |............ P...|
00000040 1l1la 95 7e la 00 bc 23 8f 2b e8 cb 44 8f 2b 9¢c 78 |..~...#.+..D.+.X|
0000050 43 31 60 do 66 ©5 ad 66 eb 6f 60 81 eb 3a 3a ©5 |C1 .f..f.0o ..::.|
0000060 fc 60 b6 17 60 66 c7 3a 60 43 3a 60 ec a5 d1 60 |. .. f.: C: ... |

0000070 6f O5 4c 17 7a Af A4f ee 8c 00 00 00 00 00 00 00 |0.L.z00......... |
0000080 99 ac eb 4a 85 97 e5 8f 85 97 e5 8f 85 97 e5 8f |

0000P090 a4 73 cb 8f ef 97 e5 8f 80 3e f7 8f 59 97 e5 8f |

P000P0Pad 80 3e b9 8f ef 97 e5 8f 13 al f7 8f 62 97 e5 8f |. ..
P00PPObO a4 ef 06 8f 24 97 e5 8f 85 97 1a 8f 7d 97 e5 8F |....$....... Fool
900000cO 13 al 2c 8f 97 97 e5 8f bO 37 b9 8f ba 97 e5 8f |

P000P0Od0 ©6 43 81 78 85 97 e5 8f 00 00 00 00 00 00 00 00 |.

0000P0eO 00 0O 00 0O 00 00 00 00 ©0 00 00 00 00 00 00 00 |................ |
P00PPOTO 70 b7 00 00 44 cb 2c 00 e5 16 93 4d 00 00 00 00 |p...D.,....M....|

—
F-Secure. Q¥

E tion/GRAYFISH
> volatility -f grayfish.vmem vaddump -pid 716

> hexdump services.exe.1f64550.0x00b00000-0x00bOafff.

00000000 5a 90 00 03 00 00 00 04 00 00 ff 00
00000010 00 00 00 00 00 00 00 40 00 00 00 00
00000020 00 00 00 00 00 00 0O 0O 00 00 00 00
00000030 00 00 00 00 00 00 0O 0O 00 00 00 00
00000040 1f ba e 00 b4 09 cd 21 b8 01 21 54
00000050 73 20 70 72 6f 67 72 61 6d 20 6e 6e |is program canno|
00000060 20 62 65 20 72 75 6e 20 69 6e 4f 53 |t be run in DOS |
00000070 6f 64 65 2e 0d 0d 9a 24 00 00 00 00
00000080 84 61 9e ef e5 0f cd ef e5 of e5 of
00000090 f9 01 cd ed e5 0f cd 80 fa 05 e5 of
00000020 fa Ob cd ed e5 Of cd d9 c3 05 e5 of
000000bo ed 52 cd ec e5 0f cd ef e5 Qe e5 of
000000c0 c3 04 cd e5 e5 0f cd 10 c5 @b e5 of
000000d0o 69 63 68 ef e5 O0f cd 00 00 00 00 00
000000e0 00 00 00 00 00 00 0O 0O 00 00 00 00
00000010 45 00 00 4c 01 94 00 of 82 59 00 00

—
F-Secure. Q¥

27

KAN: Forensics
memory tracing

Memory tracing engine KAN:
= Build on top of KVM, the Linux kernel VM
= Presented in Recon 2014

Instead of a single memory snapshot, take a series of snapshots

Create a coherent overall picture of system behavior (much like
debugging/system tracing)
Capture transient memory data, like

= Obfuscated code and data

= Self-modifying code

= Crypto keys and buffers

= Short-lived data, like URL’s, networking buffers, configuration data, etc.

More information coming from Endre Bangerter, Security Engineering Lab,
Bern University of Applied Sciences

—
F-Secure. Q¥

Summing it all:
Cuckoo sandbox

= Cuckoo has it all: instrumentation with hooks, emulators,
memory forensics, network traffic analysis, automated reporting

= Can utilize several different VM platforms: VMWare, KVM,
VirtualBox, or use a custom platform, for example real HW

= Support of volatility analysis after sample run
= Nice reporting

" Used by VirusTotal and many others

CUCKQOO

—
28 F-Secure. Q¥

